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SUMMARY

The method presented here has been used satisfactorily for many months in our
laboratory, with an experimental set up including a TV vidicon-camera and a

four degree of freedom manipulator in order to sort and specifically p031t10n
objects.

In a multi-object environment pictures must first be segmenéed in order to iso-

3ate . objects. Two contour-tracking algorithms are presented, adapted to
various types of contours. They allow picture segmentation.

Several global features, such as contour length, silhouette area and moments
of inertia, are extracted directly from the isolated contour. .

‘Local shape descriptors such as teeth, notches, etc. are also considered.

Features of this type are necessary if an object is net entirely seen, over-
flowing the picture field or hidden by another object. As local shape des-
criptor, the curvature K(s) of a contour - closely related to its bending
energy - provides highly significant information. Measured in the neighbour-
hood of every point, the curvature is used both as a function of the position
along the contour, and globally through its first statistical moments: mean
value mK and standard deviation OKf

A new procedure is-proposed, to improve by adequate filtering of parametrized
contours the accuracy of contour curvature and length.

Finally o,, L, the area A and some groupings of them such as {*J, and L2/2mA
27A will be discussed as features for the identification of entirely seen
objects. Furthermore, K(s) will be shown extremely useful for location
purpose.
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1. INTRODUCTION

Our purpose is to program one of the main tasks that an industrial robot should perform:
Visual identification and localization of objects in a multi-object environment. A
planar or quasi-planar object can generally be recognized by its shape. It can be
described conveniently by its outline. Therefore, our laboratory has developed a’
contour extrator (Ref. 1). :

In a picture where objects are given by their outlines, only the picture elements (pi-
xels) of the contours should be processed. Contour tracking tends to do so.: by radequate
book-keeping, one can detect closed contours, overcome possible gaps of the outline and

anticipate ends (Fig. 1). Moreover, when the tracking of a closed contour is completed,

the area covered by the corresponding object is separated from the global image, and
thus, picture segmentation is achieved.

From this isolated region, several global features, such as perimeter, silhouette area
and moments of inertia are directly extracted in order to identify and locate the cor-
‘responding aobject. : :

Local descriptors, such as teeth or notches should also be consideredf features of this :

type are necessary if an object is not entirely seen, overflowing the picture field or
hidden by another object. We have chosen, as local shape descriptor, the curvature of
contours (closely related to their bending energy). Measured in the neighbourhood of
‘every point, the curvature is used both as a function of the paosition along the contour
K(s) and globally, through its first statistical moments: mean value m and standard
deviation o.. While m, and 0, are used for the identification of completely seen ob-
‘jects, segments of K(s§ can be used for the recognition of partly seen objects, and for
orientation purpose by locating local properties of contours. For example, the respec--
tive position of two notches on an object gives the object orientation.

‘A new procedure is proposed to improve the accuracy of contour curvature and length by
adequate filtering of contours, thus allows better identification and location of
objects.

Let us summarize the general context of our method.development:

Assumptions: - good contrast between background and abjects

- vidicon T.V. camera with 16 levels of digitization

- 256 x 256 samples per frame

' - several ohjects per picture (in a first approach, they are not assumed
i to overlap).

_ - possible implementation in specialized hardware.
fAims : - 1 object recognized and localised psr second in average
: - accuracy better than 1% in position and in orientation detection

- possibility of lowering the speed to increase accuracy and reciprocally.

éSeveral methods process already one-object images for recognition and localisation
‘(Ref. 2,3,4). Under these restrictive assumptions, the method presented below leads to
'results similar to theirs. Moreover, it can cope with several objects invading the
§spene at the same time. Other works have been reported, closer in some respect of what
iis shown here. In particular K.J. Turner (Ref.-8), J.E. Bowie (Ref. 5], J.W. Mac Kes
fand Aggrawal (Ref. B8) ! ‘have used tangent or curvature functions along contours.
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. CONTOUR TRACKING

when a contour is tracked, it appears as a sequence of pixels. Being on a pixel, one
moves to the one of its neighbours that also belongs to the contour and so on.
The neighbourhood of a pixel (let us choose Po) can be defined more or less strictly :

either it shrinks to be the eight or even the four pixels that touch Po, and this leads

to Freeman's chain code (Ref. 7), or a larger neighbourhood radius r is considered
(5,7,10... grid units), which leads to about 2 7r neighbours (30,45, 60 pixels ).
Two algorithms have been programmed ; one 1is parametrized (r can be optimized and the
adresses of the neighbours at r distance are in a look-up table), the other encodes
contours with Freeman's chain code. This latter method appears to be faster and more
accurate in the case of very thin outline (Fig. 2). These two algorithms lead to
different frequency content for the resulting curvature and abscissa.

3. FEATURE EXTRACTION

In order to identify and locate an isolated contour, the first moment of inertia,
the curvature in every contour element, the area, the perimeter length and some
statistical moments of the curvature are extracted. :

3.1 Cuwwilinear abscissa _
" ' Let "s” be the curvilinear abscissa defined along a contour as the arc length

starting in 0, an arbitrarily chosen origin. With respect to the coordinates of
the picture x & y, the abscissa can be expressed as follows :

For a continuous contour :

s, =I5 ds S AFOTZ (0?2 dr o )
t t ) :
o o
with the parametric definition of the outline :
x = ¢(t) H y = P(t)

When the parameter is sampled with such a space between samples (it does not have
to be constant) that every pixel of the contour is taken into account, then "s”
of the outline :

becomes in any point Pk
K k
s =2 As, =X V/ix - x.)* ‘
S S S R PR 2L (2
3.2 Center of mass
The center of mass of an outline Cm is its first moment of inertia.
N N
; Lomx, - omgyy
x': - i=1 . - i=1 (3)
! Cm N * Yem N
i z. my X m,
! i=1 i=1

where m, is the mass of the contour element in Pi; as the contour is sampled, m.
is defined as follows :
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3.3

3.4

3.5

3.6

With L, the perimeter length, it becomes :

N N N -
R PP PR I8y 780X I 0s5,q 7850y
X =41 . i1 ; a1 (4)
Cm N 20 P Vem T T 2L
(s, , s, _,)
1=1 i+1 i-1
Cwvature
The curvature K(s) is defined for continuous outlines by :
K(s) = gg where 6 is given by the tangent to the contour at P(s)
_ dy/ds ‘
® = Arc tan dx/ds

For a sampled outline, we have :

K(s,) = Aek = ek
k Ask (s

Y1 T Yk

Xke1 ~ Xk

where BK = Arc tan (5)

Anea

The silhouette is often chosen as a feature for the recognition of planar objects.
A pseudo-area can be directly derived from the outline. However, to estimate the
true visible surface of an object, one should still deal with the possible holes.
In this latter case, the followed outline is not enough but may be used as a
limit for a subsequent analysis : reading of the contours inside the isolated
region, or even analysis of the primary picture which still contains surfaces
rather than -contour lines.

Pesruimeten

Perimeter is an immediate feature of an object when picked out by edge-tracking :

Asi
=1

-
[}
= ™M 2

where N is the number of elements of the sampled contour.

Statistical moments of the curvatfure

K(s) is estimated in N points regularly spaced along a contour. We can then
estimate very easily its average mK and its standard deviation UK.
For a closed contour :

N N A8 .
21 _ 1 i _f2m _ ¥2w
me =N E KIS =9 I KT TWas. T U : (6
i=1 i=1 i i
1 N - , :
2 _ 1 2 _ 2
o N ? K [Si] me (73

K i=1
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Rélation (6) gives again the information of perimeter already extracted. On the
contrary, the standard deviation o, is very meaningful, showing how much the
curvature changes along the contour. Therefore, it has also been chosen as a basic
feature of objects.

u

3.7 Remarks

Notice that the quantization noise on the x and y coordinates of contours is
another way to consider the spatial sampling of two-level pictures. When considered
parametrically{x = ¢(t), y = P(t)}, a contour is not sampled but quantized.

In the preceeding paragraphs, various features have been extracted from contours
They all are functions of the x and y coordinates. Now, x and y are quantized

(in our case to 256 levels). How does this affect the features ? While center

of mass and especially area are not too distorted, the tangents 0;, the curvatures
K; and the contour element lengths are strongly affected (respect%vely 8, 8 and 2
possible values !).

Quantization noise and original x and y functions have different spatial frequency
content.Therefore, in order to reduced. the noise influence, a filter has been
designed, with respect to a spatial variable : the curvilinear abscissa s.
However, only a noisy estimation § of s is available. But provided that this
estimation is not too bad, the noisy estimates X and § of x and y can be

improved. Then § is better evaluated when computed from these improved X and ¥
functions. As iteration goes on, §,% and § tend respectively to s, x and Va

Let © o (o) be an observed variable and V¥ o™ the same variable after n iterations.
2 | a1 . glod L(n-1)) ' | ' (8)
§[n] - h[gtn—1J] . 9(0)(§(n~1]], . (9)
and 5™ = £z(M, ¢(M) of (3.1)

In practice, two iterations are gererally sufficient; the error on & leads to a
Jitter of the filter impulse response that processes the coordinates.

4. IDENTIFICATION

In paragraph 3, several features have been introduced. They fall into very different
‘categories : global features, which result from properties of an object considered
‘as a whole (perimeter length, area, statistical moments of the curvature); and local
features, which describe only small part of an object, without any effect from the
‘other parts of the same object : the K(s) function consists of such features.

.Under the condition of completely seen objects, the global features can be used.

For our applications, they are sufficient to allow the recognition of aobjects
:(however, they do not distinguish between the observe and reverse visible sides of
obJects] A nearest neighbour rule is applied to the featurs space. An object is
recognlzed when the "distance” T is minimal between its features and the correspondina
model. memorized in a learning phase.

iCrlterlon :
C-L 5
1
| + Bl

T = 0L|‘L

s, o o
| + y| KL % K1| (103
0'
K1l

a, B and y balance the effect of evary feature, as a function of its dispersion.
L_.__._.__-____ S
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1 =1,2...N for N models.

minimum

If T, <T, forall j#i and T, <T
i J i

‘ th
the object is recognized of the same type as the i model.

Remark : let d be the distance between an object and the camera. In first approximation

L « 1/d
S « 1/d?
mK,oK «< d

Then, these features can be merged to produce new ones, size invariant.

. S -_K. _ __‘S
I = ki (11) I, = m = L > o - (12)

Altough the well known.I; is more difficult to estimate in our experimental
conditions (cf 3.4), I, can be implemented easily since L is given by the contour-
tracklng algorithm and o, is computed on K(s) necessary for location (cf § 6).
However, these invariants have the drawback that they do not balance the various
ifeatures according to their noise. Therefore, they are.often too dependent on the
most noisy features. v

'5. OBJECT LOCATION

The position of an object can be defined in one point only, independently from any
rotatlon We have chosen to consider the rotation of objects with respect to C
), the center mass of the outline. The position of C_ is given by the

1(4? Formﬂlae If one wants the position of an other point (for erample Po(xP s yP )], a
0:

. correction which varies with rotation should be taken into account.

%x. =x_ +r_ cos (B +6_) o (13)

Po Cm cP r cP

yPo = Yon * Tep 810 (er + eCP] , . | ' M
‘with r._=Vx. -x )2+ (y. -y, )° and 6 =Arctanzﬁiliﬁzl (14)
- CcpP Cm Po Cm Po cP : Xp = Xem ‘
, : . 0

1 ~

-;er is the rotation angle of the object with respect to its model (cf § 6].

iB. OBJECT ORIENTATION

Con31der an outline with a curvilinear abscissa s and a vector V defined by an
‘origin and an end on the outline. This vector is called orientation vector :

. +
IV = PgP; or, in a parametrical form, P(so]P(31]
i

§In a learning phase, every type of object is given such a vector. Consider the same

%outline after translation and rotation. The corresponding variables are s’, v', P’
|(cf Fig. 4). » :

iFirst property : if the outline turns with a er rotation, its orientation vector
gotates with the same angle. Reciprocally, the difference between the arguments of

{y and v' shows the rotation of the object. The problem remains,to find the orlentatloﬂ
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vector of an object encoded by its outline.

Second property : every point Py, of a contour is characterized by a curvature K[sl)

in this point. This curvature does not vary with translation and rotation.

Suppose K(s) known for the first contour. When the second outline is analysed, an
arbitrary origin is assigned to the curvilinear abscissa; this leads to a new function
K'(s'), different from K(s) only by an offset (cf second property and Fig. 5).

This offset is detected by cross-correlation.

For a closed contour K(s) is periodical :

-1t :
RKK' =1 1; K(n) K’ (n+Tldn _ | (15)

and for an open contour :

RKK' = 1im J L/2 K(n) . K'(n + 1)dn, assuming a zero value for K and K?® (16)
Lo -L/2 where they are not defined.

R K’ shows a maximum value for such a T that K(s) = K'(s’'-T).

wﬁen the size does not change or is normalized, an other function can be used, which
avoids multiplications : the "mean absolute difference” (MAD]. :

For a closed contour :

MAD(T) =%fol‘ [Kn) - K (n+1) | dn (17)

This function has a minimum value when T leads to K(s) = K'(s"-1).

. However, the crosscorrelation can reveal false maxima when the functions are noisy.
Therefore, two quality criteria are derived from the MAD using mean- value, standard
‘deviation, first and second minima of the function : '

m = min min = min, ,
c, = MAg MAD (18) C, = — MAE MAD 1)

MAD MAD . :
Experimentally, C; and C, have not been found very significant. Their two probability
distributions (in case of success and in case of failure) overlap widely.

The problem can be solved in another way. Let two T/2 wide windows be applied on K(s],
without overlapping. When they are mutually dependent, they lead in some sense to a
better result than when they are applied independently. The former case means a
window of equivalent width T and a better estimation of the complete function (the
spectrum has a better definition). In the latter case, however, a criterion is i
available : if both windows, independently lead to the detection of the same offset, the .
probability of success is high. ‘ : :
Let-us see better the second case; when each of the segments selected by a window on
K(s) gives a maximum of the crosscorrelation function for the same value T, the
‘noise has probably no influence; for the noise that disturbs the crosscorrelation
‘does not depend on the real contour and has no relation through the windows. If, on
-the contrary, the windows lead to extrema at different T values, that is a failure :
ithe windows must be broadened (the computation time will increase) in order to
-reduce the relative influence of noise and thereby to find the true offset.

Remark :

‘A good quality criterion allows a better trade-off between good results and computation
'time : the crosscorrelation is generally estimated with a rather narrow window, at
;high speed; however in presence of failure, detected by the criterion, the computation
istarts again, with more complexity for this particularly difficult case.

}Instead, without criterion, the worst case conditions would force the choice of a very
iwide window for every estimation.

|
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7. RESULTS . -« -

Filterning and identification

For the mechanical parts of the Photo 1, a recognition rate of 100 % has been
achieved using as features, the perimeter length and the standard aviation of the
curvature along the outline only. As noticed in (3.7), both the perimeter length
and the curvature are computed with the filtered x and y functions.

A simple average of x and y over about 10 grid units has lead to a satisfactory
accuracy of the perimeter length; after resampling, a further average over 2
samples (equivalent to about 10 grid units) has been found good enough for the
curvature estimation (Fig. 6). :

It has been experimented that when the filtering is performed on more than 10
samples, the error on perimeter length does no longer decrease. This comes from
the fact that quantization noise disappears with respect to a very low spatial
frequency distortion due to camera (Fig. 6c). _

7.2 Location and orientation detection

The accuracy of center of mass may seem to be very insensitive to quantization
noise, since it results from averaging. But experiments show important variations
of its position, as a function of the orientation, when it is computed directly
from the coordinates (sometimes the error amounts to more than 10 quantization
steps). However, after filtering of the coordinates and weighting of each contour
element proportionally to its length (cf 3.2 and 3.7), the errors of position
can be reduced to less than 1 quantization step (1 quantization step = 1 grid unit).

(LY
.
—

The accuracy in orientation detection depends at a first level on the quality of
the orientation vector origin and end. At the higher level, it depends on the
quality of the offset detection by crosscorrelation as presented in §B6. While
the maximum error involved at the first level can easily be estimated, the error
at the next level depends on the particular location of the orientation vector,
and on the particular shape of the object. In the learning phase, one will
choose a good position of the orientation vector with respect to the outline,

s0 as to minimize the sensitivity of its orientation to little shifts of its
ends along the contour.

In our experiments, the orientation was detected with a rather good accuracy

(cf fig. 7). If the crosscorrelation detects the good offset between the model
function K(s) and the new function K'(s’) being processed, the accuracy of the
detected orientation falls in a range of #3 degrees. However, the true offset may be .
missed and this leads to unpredictable results, in case of symmetries in the
outline of objects (cf photo 2). :

8. CONCLUSIONS

‘A method has been shown which alows the identification and the location of multiple
‘objects in a TV camera field. The tracking procedure that partitions the image is
followed by a quantization noise filter and a regularly spaced resampling. This first
processing takes half of the total computation time on PDP11/40.

Then, object recognition and localization are performed. In our experiments, results
Eare satisfactory : the accuracy is better than one grid unit for translation, 3° for
rotation and pratically 100 % for the recognition.

Dur main limitations are as shown on photo 2 symetries of objects (subperiocds in the
eurvature function), losses of information about texture and details inside boundary
ﬁsuch as holes...), and the computation time. Although the complete computation time
with programs written in Fortran, on a 24 k words of memory PDP 11/40 is about i
15 seconds long presently this should be reduced to less than one second by specialised |;
thardware.

'
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The method presented here has been used satisfactorily for many months in our

laboratory with an experimental set up including a four degrees of freedom manipulator.
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Fig. 6 Effect of coordinates filtering; x(s) and y(s) are averaged on 3 samples (a and b) and on 9 samples (c and d).
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Photo. 2. A further analysis of object properties within the outlines

should be done in order to detect the orientation of objects
A,B,C (subperiods of contour curvature) and to discriminate
the obverse and reverse faces .of object D (symmetry).




